We conducted capacity analyses for the 2018 short-term year, as well as the 2037 long-term year, per City of Thornton requirements. The analyses were conducted at the following intersections:

- $144^{\text {th }}$ Avenue and I-25 SB Ramps
- $144^{\text {th }}$ Avenue and I-25 NB Ramps

This signalized intersection already exists

- $144^{\text {th }}$ Avenue and Lincoln Street
- $144^{\text {th }}$ Avenue and Grant Street
- $144^{\text {th }}$ Avenue and Washington Street
- Proposed $146^{\text {th }}$ Avenue/School Driveway and Washington Street
- Lincoln Street and Lincoln Way
- Proposed $148^{\text {th }}$ Avenue and Washington Street
- Grant Street and Proposed $146^{\text {th }}$ Avenue/Site Driveway 2
- Grant Street and Proposed $148^{\text {th }}$ Avenue/Site Driveway 3
- Grant Street and Site Driveway 4
- Grant Street and Site Driveway 5

Ok to reduce taper by 65 feet to allow 285 feet of storage.

As part of this development, we propose the following improvements for the 2018 short-term year as well as the 2037 long-term year:

- The existing eastbound $144^{\text {th }}$ Avenue approach at the intersection with Lincoln Street currently provides two through lanes and a right-turn lane. We propose to widen the eastbound approach to provide three through lanes and an exclusive right-turn lane providing 220' of storage and a 165 taper. There are currently three receiving lanes for the eastbound approach, which would allow for the widening to occur with minimal

Right turns from arterials are required to have a right turn deceleration lane impact. We also proposed to re-stripe the westbound approach to provide two left-turn lanes, two through lanes, and a shared through/right-turn lane. The through/right turn lane will provide 205' of storage and a 100' taper. The southbound site driveway approach will intersect $144^{\text {th }}$ Avenue directly across from Lincoln Street and provide a left-turn lane, a shared through/right-turn lane, and a right-turn lane.

- We will extend Grant Street to the north from its current intersection with $144^{\text {th }}$ Avenue

Parks \& Open Spaces Master Plan shows bike lanes on Grant St north of 144th Ave. This should be incorporated into plans to the proposed $148^{\text {th }}$ Avenue. The extension will be constructed as two lanes in each direction, separated by a median, and will include pedestrian accommodations. The proposed extension will provide four direct-access driveways to the development.

With the extension of Grant Street across $144^{\text {th }}$ Avenue, the intersection will become a four-leg intersection under signal control. The eastbound $144^{\text {th }}$ Avenue approach will provide two left-turn lanes, two through lanes and a right-turn lane. The left-turn lanes will provide 185^{\prime} of storage and a 150^{\prime} taper. The westbound $144^{\text {th }}$ Avenue approach

Build-out for Thornton's Transportation Master Plan shows 6 lanes, or 3 through lanes in each direction

Reduce taper to 100' and increase storage to 200'
will provide two left-turn lanes, two through lanes, and a

Reduce taper to 100' and increase storage to 300' lane will provide 200' of storage and a 100' taper. The northbound Grant Street approach will provide two left-turn lanes, two through lanes, and a right-turn lane. The southbound Grant Street approach will provide two left-turn lanes, two through lanes, and a right-turn lane. The right-turn lane will provide 250' of storage and a 150 ' taper. The left-turn lanes will provide 150' of storage am̉d a 150' taper.

- At the intersection of $144^{\text {th }}$ Avenue and Washington Street we propose to extend the easthound left-turn lanes to provide 300' of storage and a 165' taper. 285' storage and 100' taper
- $146^{\text {th }}$ Avenue will be constructed directly across from the northern Stargate Charter Schoonsignalized driveway, and extend to the west to connect with the proposed Grant Street connection. $146^{\text {th }}$ Avenue will become the fourth leg at the signalized intersection. The eastbound $146^{\text {th }}$ Avenue approach will provide a left-turn lane, a through lane, and right-turn lane. The eastbound right turn will have an overlap and a green arrow during the northbound and southbound left turn protected phase. The left exclusive turn lane will provide 100 of storage and a 135^{\prime} taper. The right-turn lane will provideleft turn 250 of storage and a 135^{\prime} taper. The westbound School Driveway approach willane is continue to provide two left-turn lanes and a shared through/right-turn lane. The needed at
Per city's specs the minimum dimensions are 150 storage, 100' taper

Right \& Left turn lanes are required at all accesses along arterials
northbound Washington Street approach will provide two left-turn lanes, two through intersection lanes and a right-turn lane. The left-turn lanes will provide 200' of storage and a 100 taper. The southbound Washington Street approach is proposed to provide a left-turr lane, three through lanes, and a right-turn lane.

- $148^{\text {th }}$ Avenue wilk be constructed from the extension of Grant Street to Washington Street. $148^{\text {th }}$ Avenue will intersect Washington Street to form a T-shaped stopcontrolled intersection. The eastbound proposed $148^{\text {th }}$ Avenue approach will provide a left-turn lane, a shared throughxright-turn lane, and will be "stop"-controlled. The leftturn lane is proposed to provide 100^{\prime} of storage and a 135^{\prime} taper. The northbound Washington Street approach will provide a shared left-turn/through lane. The southbound Washington Street approach will provide a shared through/right-turn.
- In the 2037 long-term, we propose to add right-turn overlap signal heads on each approach at both the $144^{\text {th }}$ Avenue \& Grant Street and the $144^{\text {th }}$ Avenue \& Washington Street intersections. Additionally, we propose to add a right-turn overlap signal head on the eastbound approach at $144^{\text {th }}$ Avenue and Lincoln Street. This will allow the rightturn movement to run during the protected left-turn phases and will allow more vehicles to be processed through the intersection. There is a development on the SW corner of 144th \& Washington proposing a $3 / 4$ access between Washington \& Grant on 144th Ave.
iii
Their inbound left turn may conflict with extending left turn pockets at 144th \& Washington. Please coordinate.
- In the 2037 long-term, along the $144^{\text {th }}$ Avenue corridor, the weekday evening peak hour cycle length should be increased from a 100 second cycle length to a 120 second cycle length. Additional timing improvements are discussed in the Analysis of Future Traffic Operations section.
- To improve capacity along $144^{\text {th }}$ Avenue, from I-25 to Washington Street, the roadway should, in the long term (20 years) be widened to allow an additional lane in each direction (six through lotal). The future widening is included as a recommendation in the 2009 City of Thornton Transportation Plan Is this needed in 2018 at opening?
We do not expect the proposed distribution center to significantly impact area traffic operations during peak traffic hours in the short-term (2018). Based on our analyses, we determined the adjacent roadway network has sufficient capacity to accommodate the site-generated traffic associated with the proposed distribution center in the short-term (2018) with the above recommended improvements. More specifically, future traffic conditions at all signalized intersections are expected to operate at acceptable overall levels of service during the 2018 build year.

DESCRIPTION OF EXISTING CONDITIONS

This section describes the major roads and intersections, traffic volumes, and existing operations in the area of the overall development in the City of Thornton, Adams County, Colorado.

Roads

Interstate 25
$\mathrm{I}-25$ is classified as an interstate. The roadway has a general north-south orientation and provides three travel lanes in each direction within the study area with additional auxiliary lanes provided at interchange ramps. The northbound and southbound travel lanes are separated by a concrete median. The posted speed limit is 75 mph .

$144^{\text {th }}$ Avenue (Major Road)

$144^{\text {th }}$ Avenue is classified as a major arterial. The roadway has a general east-west orientation and generally provides two travel lanes in each direction with additional turn lanes at each intersection. The eastbound and westbound travel lanes are separated by a concrete median. The posted speed limit is 45 mph .

Lincoln Street Avenue is a private street.
Lincoln Street ha general north-south orientation and provides one travel lane in each direction with a two-way-left-turn median within the study area. The posted speed limit is 30 mph.

Grant is classified as
Grant Street a collector

Grant Street is classified as a minor arterial. The roadway has a general north-south orientation and provides two vehicle travel lanes and one bicycle travel lane in each direction within the study area. The northbound and southbound travel lanes are separated by a concrete median. The posted speed limit is 35 mph .

Washington Street (Major Road)

Washington Street is classified as a major arterial. The roadway has a general north-south orientation and generally provides two travel lanes in each direction with additional turn lanes at each intersection. The northbound and southbound travel lanes are separated by a concrete median. The posted speed limit is 55 mph .

Intersections

Please specify. Cycle length varies by time of day for all these intersections

$144^{\text {th }}$ Avenue and I-25 Southbound Ramps

The $\mathrm{I}-25$ southbound ramps intersect $144^{\text {th }}$ Avenue to form a four-leg intersection under signal control. The eastbound $144^{\text {th }}$ Avenue approach provides two through lanes, a through lane that is an extension of the left-turn lane at the $1-25$ northbound ramps, and a channelized right-turn lane under yield-control. The westbound $144^{\text {th }}$ Avenue approach provides two left-turn lanes and two through lanes. The southbound $1-25$ ramp approach provides two left-turn lanes and a channelized right-turn lane that free-flows into an auxiliary lane. The signal operates under three phases with a 100-seeond background cycle length.

$144^{\text {th }}$ Avenue and I-25 Northbound Ramps

The I-25 northbound ramps intersect $144^{\text {th }}$ Avenue to form a four-leg intersection under signal control. The eastbound $144^{\text {th }}$ Avenue approach provides two left-turn lanes and two thru lanes. The westbound $144^{\text {th }}$ approach provides two through lanes, two through lanes that are extensions of the left-turn lanes at the l-25 southbound ramps, and a channelized right-turn lane under yield-control. The northbound l-25 ramp approach provides two left-turn lanes and one channelized right-turn lane that free-flows into an auxiliary lane. The signal operates under three phases with a 100-second background cycle length.

$144^{\text {th }}$ Avenue and Lincoln Street

Lincoln Street intersects $144^{\text {th }}$ Avenue to form a T-shaped intersection under signal control. The eastbound $144^{\text {th }}$ Avenue approach provides two through lanes and a right-turn lane. The westbound $144^{\text {th }}$ Avenue approach provides two left-turn lanes and three through lanes. The northbound Lincoln Street approach provides two left-turn lanes and a right-turn lane. The signal operates under three phases with a 100-second background cycle length.
$144^{\text {th }}$ Avenue and Grant Street
Grant Street intersects $144^{\text {th }}$ Avenue to form a T-shaped intersection under signal control. The eastbound $144^{\text {th }}$ Avenue approach provides two left-turn lanes, two through lanes, and a right- turn lane. The westbound $144^{\text {th }}$ Avenue approach provides two left-turn lanes and two through lanes. The northbound Grant Street approach provides two left-turn lanes, two through that are currently coned and closed, and a right-turn lane. The signal operates under three phases with a 100-second background cycle length.

$144^{\text {th }}$ Avenue and Washington Street

Washington Street intersects $144^{\text {th }}$ Avenue to form a four-leg intersection under signal control. The eastbound $144^{\text {th }}$ Avenue approach provides two left-turn lanes, two through lanes and one
right-turn lane. The westbound $144^{\text {th }}$ Avenue approach provides two left-turn lanes, two through lanes and one right-turn lane. The northbound Washington Street approach provides two left-turn lanes, two through lanes and one right-turn lane. The southbound Washington Street approach provides two left-turn lanes, two through lanes and one right-turn lane. The signal operates under four phases with a 100-second background cycle length.

Washington Street and School Driveway

The School Driveway intersects Washington Street to form a T-shaped intersection under signal control. The westbound School Driveway approach provides two left turn lanes and one shared through/right-turn lane. The northbound Washington Street approach provides one left-turn lane, two through lanes and one right-turn lane. The southbound Washington Street approach provides one left-turn lane, three through lanes, and one right-turn lane. The signal operates under fourphases with a 100-second background cycle length.

Lincoln Way intersects Lincoln Street to form a four-leg intersection under stop control. The eastbound Lincoln Way approach provides one shared left-turn, through and right-turn lane and is "stop"-controlled. The westbound Lincoln Way approach provides one shared left-turn, through and right-turn lane and is "stop"-controlled. The northbound Lincoln Street approach provides one through lane, one channelized right-turn lane under yield control, and a two-way-left-turn median. The southbound Lincoln Street approach provides one shared through/rightturn lane and a two-way-left-turn median.

Traffic Volumes

There is overlap with
street AM peak hour.

We arranged for traffic counts to be conducted during morning and evening peak periods on a typical weekday at the study intersections to examine traffic conditions near the development. Specifically, we arranged for manual turning movement counts to be conducted on Thursday, 12 January 2017 from 5:00 AM to 9:00 AM and from 4:00 PM to 8:00 PM. Additionally, ATR (Automatic Traffic Recorders) counts were conducted on both $144^{\text {th }}$ Avenue and Washington Street from 12:00 PM on Monday, January 9, 2017, to 12:00 PM on Friday, Januaty 17, 2017.

It is noted that the tenant specific data indicates that peak shift turnover periods and traffic activity associated with the proposed development generally do not coincide with the roadway peak hours. The morning shift turnover for the facility occurs between 6:30 AN to 7:30 AM. During the evening, the shift turnover period occurs between 5:00 PM to 6:00 PM. For the purpose of this study, analyses were conducted during the p.oposed development's peak hours instead of the street peak hours. Figure 2 illustrates the existing weekday morning and evening peak hour traffic volumes as well as the AADT (Annual Average Daily Traffic) volumes. We obtained the AADT volumes from the ATR counts we pefformed.

Figure 2 illustrates the existing weekday morning and/evening peak hour traffic volumes. Summaries of the manual traffic counts are contained in/Appendix C.

The morning peak modeled in Synchro with existing conditions does not use timings from 6:30-7:30

5-6 PM is also street PM peak hour.

Are these shift turnovers subject to change?

```
What about weekend analysis?
The facility is intended to be
24/7,7 day a week operation.
Need to confirm impact of
weekend peak vs. shift
turnover.
```

What about truck peak and its impact?

Table 1 Cont'd - Intersection Capacity Analysis Summary (Existing)

Location	Movement		2017 Existing Traffic	
			AM	PM
Signalized Intersections				
144* Avenue and Washington Street	EB	L	E (57.9)	C (32.9)
		T	A (7.0)	C (31.6)
		R	A (1.6)	B (16.9)
	WB	L	D (46.2)	D (45.5)
		T	B (15.4)	B (19.8)
		R	A (0.1)	A (0.1)
	NB	L	D (46.1)	D (48.8)
		T	D (35.7)	D (40.9)
		R	A (0.2)	A (1.2)
	SB	L	D (49.6)	D (50.7)
		T	D (44.9)	D (39.4)
		R	A (4.5)	B (10.2)
	Overall		C (21.8)	C (28.9)
Washington Street and Proposed 146 Avenue/ School Driveway	WB	L	D (42.5)	D (43.1)
		T, R	A (0.0)	A (0.1)
	NB	T	A (0.3)	A (0.4)
		R	A (0.0)	A (0.1)
	SB	L	D (45.0)	D (45.8)
		T	A (0.6)	A (2.3)
	Overall		A (0.9)	A (6.4)
Unsignalized Intersections				
Lincoln Street and Lincoln Way	EB	L,T,R	A (8.9)	B (13.0)
	WB	L	A (0.0)	B (12.4)
		T, R	A (8.4)	B (10.0)
	NB	L	A (0.0)	A (7.7)
	SB	L	A (7.2)	A (7.7)
	Overall		A (4.2)	A (1.3)

What about 146th \&
Grant roundabout
level-of-service?

PROPOSED CONDITIONS

Site-Generated Trips

The overall development was originally approved for approximately 565,000 sf of retail space and a 300-room hotel. The trip generation estimates for the original approval are summarized in Table 2. As per the 2010 traffic studies, the trip generation was determined based on the data published by the Institute of Transportation Engineers (ITE) for Land Use Code 820 (Shopping Center) and Land Use Code 310 (Hotel) as contained in Trip Generation, $7^{\text {th }}$ edition.

Table 2 - Trip Generation Estimates - Original Approval

	Use	Daily	Weekday AM Peak Hour			Weekday PM Peak Hour		
			In	Out	Total	In	Out	Total
	565,000 sf Retail	2,676	117	84	201	103	107	210
Full	300-room Hotel	24,261	355	227	582	1,017	1,102	2,119
changeove	Total	26,937	472	311	783	1,120	1,209	2,329
r would be	15\% Internal Capture	4,040	71	46	117	168	181	349
expected	Total New Trips	22,897	401	265	666	952	1,028	1,979

We prepared trip generation estimates for the proposed distribution center based on tenant-

Volumes appear to be more in line with a non-peak volume that would be expected. Peak volume would b expected to be much higher. specific projected operations. The trip generation estimates are based on operations during the anticipated peak operating season (November - December). During other times of the year the trip generation would be significantly less (approximately 40 percent), as shown in the table below. Table 3 summarizes the trip generation estimates for the distribution center during the weekday morning and evening peak hours.

What are truck bolumes during "truck peak"?
Table 3 - Future Trip Generation Estimates - Proposed 856,600 sf Distribution Center

Use	Daily	Weekday AMPeak Hour			WeekdayPM Peak Hour		
		Ln	Out	Total		Out	Total
Peak Operating Season (November - December)							
Passenger Cars*	10,586	1,128	$\checkmark 12$	1,140	1,201	1,201	2,402
1 0\% Carpool Reduction	1.859	113	1	114	120	120	240
Passenger Cars W/ Reduction	9,527	1,015	11	1,026	1,081	1,081	2,162
Trucks*	654	18	14	32	15	13	28
Total	10,181	1,033	25	1,058	1,096	1,094	2,190
Non-Peak Operation Season (January - October)							
Passenger Cars	6,352	677	7	684	721	720	1,441
Trucks	392	11	8	19	9	8	17
Total	6,744	688	15	703	730	728	1,458

*Based on Tenant specific data.
Do not assume a 10\% carpool reduction.

Need to show how this table relates to ITE trip generation. Land Use 152 High-Cube Warehouse/Distribution Center provides a study on a facility used to "receive, sort and ship overnight or expedited small parcels to local destinations." It shows a trip rate of $1.97 / 1000$ sqft (AM) $2.23 / 1000$ sqft(PM) and $23.73 /$ sqft (daily). Based on 856,600 sqft, this is 1688 AM trips, 1910 PM trips, and 24,610 weekday trips which varies substantially from the table above

ANALYSIS OF FUTURE TRAFFIC OPERATIONS

Capacity analysis provides an indication of the adequacy of road facilities to serve traffic demand. We conducted capacity analyses for the study intersections and found that the proposed distribution center will not detrimentally impact traffic operations during peak hours with the proposed roadway improvements. Tables 6 and 7 summarize the 2018 and 2037 background traffic and future traffic levels of service (LOS) for each of the study intersections. All capacity printouts are contained in Appendix E. The 2010 Highway Capacity Manual (HCM) level of service (LOS) criteria for both unsignalized and signalized intersections is contained in Appendix E. LOS for this movement does not seem to reflect the volume anticipated.

Table 6 - Intersection Capacity Analysis Summary (2018)

Location	Movement		2018 Background Traffic		2018 Total Future Traffic	
			AM	PM	AM	PM
Signalized Intersections						
$144^{\text {th }}$ Avenue and I-25 SB Ramps	EB	T	B (12.8)	C (20.2)	B (15.6)	C (31.0)
		R	A (0.3)	A (0.5)	A (0.3)	A (0.5)
	WB	L	D (47.6)	D (38.2)	D (51.0)	E (76.6)
		T	A (6.3)	B (16.5)	A (7.8)	B (12.2)
	SB	L	D (50.4)	D (48.6)	D (49.2)	D (46.6)
		R	A (0.2)	A (0.4)	A (0.2)	A (0.4)
	Overall		B (16.5)	B (19.0)	C (20.0)	C (29.8)
$144^{\text {th }}$ Avenue and I-25 NB Ramps	EB	L	D (45.9)	D (36.6)	D (41.6)	D (37.6)
		T	A (0.9)	A (5.0)	A (1.1)	B (14.8)
	WB	T	C (23.5)	C (26.2)	C (21.9)	C (24.2)
		R	A (0.3)	A (0.3)	A (0.3)	A (0.5)
	NB	L	D (47.4)	D (45.7)	D (47.4)	D (45.7)
Westbound right turn lane will be required.		1	A (0.2)	A (0.5)	A (0.9)	A (1.7)
	Overall		B (19.7)	B (16.9)	B (15.0)	B (17.9)
		T	A (6.0)	B (10.6)	B (10.1)	B (15.4)
$144^{\text {th }}$ Avenue and Lincoln Street/ Site Driveway 1		R	A (0.7)	A (1.7)	A (3.4)	A (5.0)
		L	D (46.0)	E (62.0)	D (42.6)	D (42.5)
		T	A (5.5)	A (5.9)	-	-
		\$R	-	-	A (6.1)	B (11.9)
	NB	L	D (46.5)	D (47.0)	D (46.5)	E (62.5)
		R	B (12.7)	A (8.9)	-	-
		T,R	-	-	B (13.3)	A (8.4)
	SB	L	-	-	D (46.0)	D (46.0)
		T, R	-	-	A (0.0)	A (7.7)
		R	-	-	A (0.0)	A (7.6)
	Overall		B (11.0)	B (14.2)	B (11.2)	B (16.9)
$144^{\text {th }}$ Avenue and Grant Street	EB	L	-	-	E (57.4)	E (71.4)
		T	A (4.5)	A (8.9)	A (1.8)	B (12.5)
		R	A (0.7)	A (2.1)	A (0.4)	A (1.9)
	WB	L	D (40.6)	D (41.1)	D (41.7)	D (54.6)
		T	A (5.0)	A (4.4)	B (17.8)	B (11.0)
		R	-	-	A (6.0)	A (1.8)
	NB	L	D (47.1)	D (51.4)	D (53.4)	E (68.0)
		T	-	-	D (42.2)	D (41.4)
		R	B (12.0)	B (10.9)	A (9.3)	B (13.3)
	SB	L	-	-	D (45.0)	D (46.5)
		T	-	-	D (45.0)	D (42.5)
		R	-	-	A (0.0)	D (35.6)
	Overall		B (11.2)	B (13.5)	C (20.5)	C (23.9)

In what year is LOS F
anticipated to occur?
Table 7 - Intersection Capacity Analysis Summary (2037)

See previous
comment about need to assume background volume on Grant, etc.

We used the timing directives provided by the City of Thornton and the City of Westminster and included them in Appendix D. Figure 13 summarizes the 2018 and 2037 future lane geometry at each of the study intersections. In order to create adequate capacity along $144^{\text {th }}$ Avenue, from l-25 to Washington Street, the roadway should, in the long term (20 years) be widened to allow an additional lane in each direction (three through lanes each direction). The results of our 2037 weekday evening peak hour analysis shows that this improvement, which has been recommended previously by other entities, would improve flow along the $144^{\text {th }}$ Avenue corridor. It should be noted that to be conservative, the 2037 analyses contained herein do not include the future widening of $144^{\text {th }}$ Avenue as recommend in the 2009 City of Thornton Transportation Plan.
$144^{\text {th }}$ Avenue and l-25 Southbound Ramps 2018

Need to know if widening to 6 lanes will be adequate by 2037.

The signalized intersection is expected to operate at an overall LOS B during both the weekday morning and evening peak hours under the background condition. Under the future condition, the intersection is expected to operate at an overall LOS C during both peak hours. During the evening peak hour it is recommended to shift 7 seconds of green time from the eastbound/westbound R.O.W. phase to the westbound advance phase.

2037

The signalized intersection is expected to operate at an overall LOS C during the weekday morning peak hour and overall LOS E during the weekday evening peak hour under the background condition. Under the future condition, the intersection is expected to operate at an overall LOS C during the weekday morning peak hour and overall LOS E during the weekday evening peak hour.

During the morning peak hour it is recommended to adjust the offset from 32 seconds to 25 seconds. During the evening peak hour it is recommended to increase the cycle length along $144^{\text {th }}$ Avenue to 120 seconds and at this intersection adjust the offset from 0 seconds to 18 seconds.

$144^{\text {th }}$ Avenue and l-25 Northbound Ramps

2018
The signalized intersection is expected to operate at an overall LOS B during both the weekday morning and evening peak hours under the background condition. Under the future condition, the intersection is expected to continue to operate at an overall LOS B during both the weekday morning peak hour and evening peak hours.

All movements at this stop-controlled intersection are expected to operate at LOS C or better during the weekday morning peak hour and LOS E or better during the weekday evening peak hour under the future condition.

Grant Street and Proposed $148^{\text {th }}$ Avenue/Site Driveway 3

Geometry

The proposed $148^{\text {th }}$ Avenue and Site Driveway 3 will intersect the proposed Grant Street extension to form a T-shaped stop-controlled intersection. The eastbound site driveway approach will provide a shared through/right-turn lane and will be "stop"-controlled. The westbound proposed $148^{\text {th }}$ Avenue will provide a shared left-turn/through lane and will be "stop"-controlled. The northbound Grant Street approach will provide a left-turn lane and a right-turn lane.

2018

All movements at this stop-controlled intersection are expected to operate at LOS A during both the weekday morning and evening peak hours under the future condition.

2037
All movements at this stop-controlled intersection are expected to operate at LOS A during both the weekday morning and evening peak hours under the future condition.

Grant Street and Site Driveway 4

Geometry

Site Driveway 4 will intersect the proposed Grant Street extension to form a T-shaped stopcontrolled intersection. The eastbound site driveway approach will provide a channelized rightturn lane and will be "stop"-controlled. The northbound Grant Street approach will provide two through lanes. The southbound Grant Street approach will provide two through lanes. It is noted that the northbound and southbound approaches are separated by a cohcrete median.

2018
What about right
turns?

All movements at this stop-controlled intersection are expected to operate at LOS A during both the weekday morning and evening peak hours under the future condition.

2037
All movements at this stop-controlled intersection are expected to operate at LOS A during both the weekday morning and evening peak hours under the future condition.

Grant Street and Site Driveway 5

Geometry

Site Driveway 5 will intersect the proposed Grant Street extension to form a T-shaped stopcontrolled intersection. The eastbound site driveway approach will provide a shared left-turn/right-turn lane and will be "stop"-controlled. The northbound Grant Street approach will provide a shared left-turn through lane and a through lane. The southbound Grant Street approach will provide a through lane and a shared through/right-turn lane.

2018

Need separate left
All movements at this stop-controlled intersection areturn lane. LOS A during both the weekday morning and evening peak hours under the future condition.

2037
All movements at this stop-controlled intersection are expected to operate at LOS A during both the weekday morning and evening peak hours under the future condition.

Grant Street and Proposed 146 ${ }^{\text {th }}$ Avenue/Site Driveway 2 (Roundabout)

Geometry

The proposed $146^{\text {th }}$ Avenue and Site Driveway 2 intersect the proposed Grant Street extension to form a yield-controlled roundabout. The inner circle will provide two travel lanes. The eastbound site driveway and westbound proposed $146^{\text {th }}$ Avenue approaches are to provide one entering and one exiting lane and are "yield"-controlled. The northbound and southbound Grant Street approaches will provide two entering and two exiting lanes and are "yield"controlled.

2018
All movements at the roundabout intersection are expected to operate at LOS B or better during both the weekday morning and evening peak hours under the future condition.

2037
All movements at the roundabout intersection are expected to operate at LOS B or better during both the weekday morning and evening peak hours under the future condition.

INTERSECTION QUEUING ANALYSIS

We reviewed the $95^{\text {th }}$ percentile queue lengths from the Synchro analyses at the study intersections for the critical turning movements. The table below summarizes the existing turn lane queue lengths, if present, compared to the $95^{\text {th }}$ percentile queue. At the applicable intersections and movements an hovo ven nrovidnd recommended turn lane length as a

Storage needs to exceed 95th percentile queue (typical).
ion. The queuing analysis results are
alysis. Existing turn lane length is not this long.

Table 8 - Queuing Analysis Results (2018)

Location	Movement		AM Peak Hour			PMPeak Hour		
			$\begin{gathered} \hline \text { Existing Turn } \\ \begin{array}{c} \text { Lane Length } \\ \text { (feet) } \end{array} \\ \hline \end{gathered}$	2018 Queue Lengtt (feet)	Recommended Turn Lane Length (feet)	Existing Turn Lane Length (feet)	$\begin{aligned} & 2018 \text { Queue } \\ & \text { Length (feet) } \end{aligned}$	Recommended Turn Lane Length (feet)
$144^{\text {TH }}$ Ave and I-25 SB Ramps	WB	L	685'	$19{ }^{\prime}$	-	$685{ }^{\prime}$	391'	-
	SB	L	300'	155^{\prime}	-	300'	234'	-
$144^{\text {th }}$ Ave and I-25 NB Ramps	EB	L	685'	80^{\prime}	-	685'	106'	-
	NB	L	300'	1\$7'	-	300'	195'	-
$144^{\text {th }}$ Ave and Lincoln St	WB	L	140'	$52 \cdot$	-	149'	55'	-
	NB	L	350'	103'	-	350	241'	-
		T, R	-	40^{\prime}	-	-	67'	-
	SB	L	-	$\$^{\prime}$	100'	-	$6{ }^{\prime}$	100'
		T, R	-	0'	-	-	17'	-
$\begin{gathered} 144^{T H} \text { Ave } \\ \text { and } \\ \text { Grant St } \end{gathered}$	EB	L	-	213^{\prime}	185'	-	109'	185'
		R	600'	$0 '$	-	600'	26^{\prime}	-
	WB	L	200'	51'	-	200'	68'	-
		R	-	49'	200'	-	15^{\prime}	200'
	NB	L	150'	105'	-	150'	188'	-
		R	125'	29'	-	125'	65'	-
	SB	L	-	3'	150'	-	64^{\prime}	150'
		R	-	$0{ }^{\prime}$	250'	-	175'	250'
$\begin{gathered} 144^{\mathrm{TH}} \text { Ave } \\ \text { and } \\ \text { Washington St } \end{gathered}$	EB	L	200'	116'	300'	200'	246'	300'
		R	200'	$0 '$	-	200'	283'	-
	WB	L	175'	67'	-	175'	52'	-
		R	150'	$0 '$	-	150'	16'	-
	NB	L	225'	104'	-	225'	173'	-
		R	200'	$0{ }^{\prime}$	-	200'	9^{\prime}	-
	SB	L	325'	10'	-	325'	76'	-
		R	250'	109'	-	250'	109'	-
$146^{\text {th }}$ Ave / School Drwy and Washington St	EB	L	-	6^{\prime}	100'	-	41'	100'
		R	-	$0 '$	250'	-	197'	250'
	WB	L	70'	4^{\prime}	-	70'	49'	-
	NB	L	200'	187'	-	200'	196'	-
	SB	L	175'	9'	-	175'	25^{\prime}	-

As shown in the table, it is anticipated that the queues will remain within the storage lengths with the exception of the eastbound left and right turn movements at $144^{\text {th }}$ Avenue and Washington Street during the weekday evening peak hour. It is recommended to extend the eastbound double left turn movements to provide a storage length of 300', which would contain the anticipated queue length.

Through movements should also be considered. If through lanes queue pass left turn lanes, extra storage may be required

> Why is 148th Ave \& Washington St not included in queue analysis?

509-144TH @ I25 SB - Econolite Type - ASC3
Configuration Phase Sequence
Controller Sequence (MM)1-1-1

Do not include database printouts for controllers in this report. The preference would be to not have this information in a report.

Hardware Alternate Sequence Enable: Yes
Phase Ring Sequence........(Note: Sequences identical to the prior one are not printed)

	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
B	B	B	B	B		16									

Sequence 1
Ring 1

| 1 | 2 | 3 | 4 | 9 | $10 \mid$ | 13 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |.

| Ring 2 | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{1 1}$ | $\mathbf{1 2} \mid \mathbf{1 5}$ | $\mathbf{1 6} \mid$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sequence 2
Ring 1

| \mid | 2 | 1 | 3 | 4 | 10 | 9 | 13 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | .

| Ring 2 | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{1 1}$ | $\mathbf{1 2} \mid \mathbf{1 5}$ | $\mathbf{1 6} \mid$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sequence 3
Ring 1

\mid	1	2	4	3	9	10	14	13

Ring 2

5	6	7	8	11	12	15	16

Sequence 4
Ring 1

	2	1	4	3	10	9	14	13

Ring 2	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{1 6}$

Sequence 5
Ring 1

	1	2	3	4	9	10	13	14

Ring 2	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 5}$	$\mathbf{1 6}$

Sequence 6

| Ring 1 | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{4}\|\mid \mathbf{1 0}$ | $\mathbf{9}$ | $\mathbf{1 3}$ | $\mathbf{1 4} \mid$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ring 2 | $\mid \mathbf{6}$ | $\mathbf{5}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{1 2}$ | $\mathbf{1 1}$ | $\mathbf{1 5}$ | $\mathbf{1 6} \mid$ | . |

Sequence 7

Ring 1	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{9}$	$\mathbf{1 0} \mid$	$\mathbf{1 4}$	$\mathbf{1 3}$.	
Ring 2	\mid	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 5}$	$\mathbf{1 6}$.

Sequence 8

Ring 1	\mid	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{1 4}$	$\mathbf{1 3} \mid$.
Ring 2	$\mid \mathbf{6}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 5}$	$\mathbf{1 6} \mid$.	

Sequence 9

Ring 1	\mid	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}\|\mid$	$\mathbf{9}$	$\mathbf{1 0} \mid$	$\mathbf{1 3}$	$\mathbf{1 4} \mid$
Ring 2	$\mid \mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{1 5} \mid$	$\mathbf{~}$

Sequence 10

Ring 1	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{1 0}$	$\mathbf{9} \mid \mathbf{1 3}$	$\mathbf{1 4} \mid$.		
Ring 2	\mid	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{1 5}$.

Sequence 11

Ring 1	\mid	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{3}\|\mid$	$\mathbf{9}$	$\mathbf{1 0} \mid \mathbf{1 4}$	$\mathbf{1 3} \mid$	
Ring 2	\mid	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1 1}$	$\mathbf{1 2} \mid$	$\mathbf{1 6}$	$\mathbf{1 5}$

	4			\checkmark	4	4	$4 \times$		p		\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7} 1$	中4			†††	7	${ }^{7 \% 1}$		「'			
Traffic Volume (vph)	183	242	0	0	739	183	328	0	138	0	0	0
Future Volume (vph)	183	242	0	0	739	183	328	0	138	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	150		0	0		0	0		0
Storage Lanes	2		0	2		1	2		1	0		0
Taper Length (ft)	25			125			25			25		
Lane Util. Factor	0.97	0.95	1.00	1.00	*0.89	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Frt						0.850			0.850			
Flt Protected	0.950						0.950					
Satd. Flow (prot)	3467	3610	0	0	6764	1599	3467	0	1599	0	0	0
Flt Permitted	0.950						0.950					
Satd. Flow (perm)	3467	3610	0	0	6764	1599	3467	0	1599	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						208			175			
Link Speed (mph)		45			45			40			40	
Link Distance (ft)		620			720			465			385	
Travel Time (s)		9.4			10.9			7.9			6.6	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles (\%)	1\%	0\%	0\%	0\%	0\%	1\%	1\%	0\%	1\%	0\%	0\%	0\%
Adj. Flow (vph)	208	275	0	0	840	208	373	0	157	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	208	275	0	0	840	208	373	0	157	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	L NA	Left	Right	Left	Left	Right	L NA	L NA	Right	Left	Left	Right
Median Width(ft)		31			30			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2			2	1	1		1			
Detector Template	Left	Thru			Thru	Right	Left		Right			
Leading Detector (ft)	20	100			100	20	20		20			
Trailing Detector (ft)	0	0			0	0	0		0			
Detector 1 Position(ft)	0	0			0	0	0		0			
Detector 1 Size(ft)	20	6			6	20	20		20			
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex	Cl+Ex	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$			
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Queue (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Delay (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 2 Position(ft)		94			94							
Detector 2 Size(ft)		6			6							
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex							
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0							
Turn Type	Prot	NA			NA	Free	Prot		Free			
Protected Phases	1	6			2		4					

Intersection Summary		
Area Type: Other		All of Thornton's controllers are programmed to reference beginning of main street yellow. This may impact some of the existing condition model results.
Cycle Length: 100		
Actuated Cycle Length: 100		
Offset: 97 (97\%), Referenced to phase	of Greषi	
Natural Cycle: 45		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.36		
Intersection Signal Delay: 8.5	Intersection LOS: A	
Intersection Capacity Utilization 33.4\%	ICU Level of Service A	
Analysis Period (min) 15		

Splits and Phases: 15: Lincoln St \& 144th Ave

Lanes，Volumes，Timings

Lane Group EBL EBT EBR

Lane Group	EBL	EBT	EBR				NBL	NBT
Lane Configurations	\％${ }^{1 / 1}$	性	「	\％ 1	个4	F	\％ 7	个4
Traffic Volume（vph）	95	167	93	87	648	39	78	87
Future Volume（vph）	95	167	93	87	648	39	78	87
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900

EB through tapers
down to one lane east of intersection．
This needs to be reflected in the model．

Storage Length (ft)	200	200
Storage Lanes	2	1
Taper Length (ft)	150	

Taper Length（ft）	150		
Lane Util．Factor	0.97	0.95	1.00
Frt			0.850

Flt Protected	0.950			0.950			0.950	
Satd．Flow（prot）	3502	3610	1615	3502	3610	1615	3502	3574
Flt Permitted	0.950			0.950			0.950	
Satd．Flow（perm）	3502	3610	1615	3502	3610	1615	3502	3574

Satd．Flow（perm）	3502	3610	1615	3502	3610	1615	3502	3574	1615	3502	5187	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			153			207			207			207
Link Speed（mph）		45			45			55			55	
Link Distance（ft）		1010			525			623			1222	
Travel Time（s）		15.3			8.0			7.7			15.1	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles（\％）	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	1%
Adj．Flow（vph）	107	188	104	98	728	44	88	98	18	6	138	131

Shared Lane Traffic（\％）												
Lane Group Flow（vph）	107	188	104	98	728	44	88	98	18	6	138	131
Enter Blocked Intersection	No											
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	L NA	Left	R NA	L NA	Left	RNA
Median Width（t）		31			24			32			32	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		50			40			50			50	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right									
Leading Detector（ft）	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector（tt）	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position（ft）	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size（ft）	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl＋Ex											

Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position（ft）		94			94			94			94	
Detector 2 Size（ft）		6			6			6			6	
Detector 2 Type		Cl＋Ex			Cl＋Ex			Cl＋Ex			Cl＋Ex	
Detector 2 Channel												
Detector 2 Extend（s）		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm									
Protected Phases	7	4		3	8		5	2		1	6	

Lanes, Volumes, 12: I-25 NB Ramp	To assist with addressing the weave issue for northbound right at 144th \& I-25 NB to eastbound left at 144th \& Grant, the			2018 Background Traffic Volumes								
				7				4				
Lane Group	outside la	ne will	need	NBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	to be co	verted			†ttt	F	\% ${ }^{\text {\% }}$		「			
Traffic Volume (vph)	shared			0	987	329	458	0	460	0	0	0
Future Volume (vph)	left/throu	gh/rig	t lane.	0	987	329	458	0	460	0	0	0
Ideal Flow (vphpl)	The isla	nd and	traffic	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	signal po	le on		150		0	0		0	0		0
Storage Lanes	corner	ill need	to be	2		1	2		1	0		0
Taper Length (tt)				125			25			25		
Lane Util. Factor				1.00	*0.73	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Frt	accomm	date	he new			0.850			0.850			
Flt Protected	lane con	figurat					0.950					
Satd. Flow (prot)	3502	3610	0	0	5548	1615	3502	0	1615	0	0	0
Flt Permitted	0.950						0.950					
Satd. Flow (perm)	3502	3610	0	0	5548	1615	3502	0	1615	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						350			489			
Link Speed (mph)		45			45			40			40	
Link Distance (ft)		620			720			465			385	
Travel Time (s)		9.4			10.9			7.9			6.6	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	314	1371	0	0	1050	350	487	0	489	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	314	1371	0	0	1050	350	487	0	489	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	LNA	Left	Right	Left	Left	Right	LNA	LNA	Right	Left	Left	Right
Median Width(ft)		31			30			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2			2	1	1		1			
Detector Template	Left	Thru			Thru	Right	Left		Right			
Leading Detector (ft)	20	100			100	20	20		20			
Trailing Detector (ft)	0	0			0	0	0		0			
Detector 1 Position(ft)	0	0			0	0	0		0			
Detector 1 Size(ft)	20	6			6	20	20		20			
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex			
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Queue (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Delay (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 2 Position(ft)		94			94							
Detector 2 Size(ft)		6			6							
Detector 2 Type		Cl+Ex			Cl+Ex							
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0							
Turn Type	Prot	NA			NA	Free	Prot		Free			
Protected Phases	1	6			2		4					
Permitted Phases						Free			Free			

18: Washington St \& 148th Ave

Intersection						
Int Delay, s/veh 3.6						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\hat{\beta}$			\uparrow	\%	「
Traffic Vol, veh/h	14	0	30	18	1	1
Future Vol, veh/h	14	0	30	18	1	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	15	0	33	20	1	1

	ψ	\rightarrow						4			¢	\pm
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases			Free									Free
Detector Phase		2		1	6					4		
Switch Phase												
Minimum Initial (s)		15.0		6.0	15.0					5.0		
Minimum Split (s)		22.0		11.0	22.0					12.0		
Total Split (s)		41.0		23.0	64.0					36.0		
Total Split (\%)		41.0\%		23.0\%	64.0\%					36.0\%		
Maximum Green (s)		34.0		18.0	57.0					29.0		
Yellow Time (s)		5.0		3.0	5.0					4.0		
All-Red Time (s)		2.0		2.0	2.0					3.0		
Lost Time Adjust (s)		0.0		0.0	0.0					0.0		
Total Lost Time (s)		7.0		5.0	7.0					7.0		
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0		5.0	3.0					1.5		
Recall Mode		C-Max		None	C-Max					None		
Act Effct Green (s)		47.1	100.0	18.0	70.1					15.9		100.0
Actuated g/C Ratio		0.47	1.00	0.18	0.70					0.16		1.00
v/c Ratio		0.38	0.34	1.05	0.57					0.75		0.21
Control Delay		18.2	0.6	79.1	8.3					48.7		0.3
Queue Delay		0.0	0.0	0.0	0.0					0.0		0.0
Total Delay		18.2	0.6	79.1	8.3					48.7		0.3
LOS		B	A		- A					D		A
Approach Delay		10.9			30.1						26.8	
Approach LOS		B			c						C	
90th \%ile Green (s)		42.6		18.0	65.6					20.4		
90th \%ile Term Code		Coord		Max	Coord					Gap		
70th \%ile Green (s)		45.3		18.0	68.3					17.7		
70th \%ile Term Code		Coord		Max	Coord					Gap		
50th \%ile Green (s)		47.1		18.0	70.1					15.9		
50th \%ile Term Code		Coord		Max	Coord					Gap		
30th \%ile Green (s)		49.0		18.0	72.0					14.0		
30th \%ile Term Code		Coord		Max	Coord					Gap		
10th \%ile Green (s)		51.7		18.0		促				11.3		
10th \%ile Term Code		Coord		Max	Coord	prov	in			Gap		
Stops (vph)		451	0	549	583 p	ease				357		0
Fuel Used(gal)		14	4	19	15					11		3
CO Emissions (g/hr)		984	292	1331	1050					796		236
NOx Emissions (g/hr)		192	57	259	204					155		46
VOC Emissions (g/hr)		228	68	308	243					185		55
Dilemma Vehicles (\#)		36	0	0	5					0		0
Queue Length 50th (ft)		134	0	~ 240	154					130		0
Queue Length 95th (ft)		188	0	\#355	195					172		0
Internal Link Dist (ft)		1142			540			294			448	
Turn Bay Length (ft)												
Base Capacity (vph)		2042	1599	617	2532					1005		1615
Starvation Cap Reductn		0	0	0	0					0		0
Spillback Cap Reductn		0	0	0	0					0		0
Storage Cap Reductn		0	0	0	0					0		0

	\Rightarrow			7							$\frac{1}{\dagger}$	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases			Free									Free
Detector Phase		2		1	6					4		
Switch Phase												
Minimum Initial (s)		15.0		6.0	15.0					5.0		
Minimum Split (s)		22.0		11.0	22.0					12.0		
Total Split (s)		50.0		34.0	84.0					36.0		
Total Split (\%)		41.7\%		28.3\%	70.0\%					30.0\%		
Maximum Green (s)		43.0		29.0	77.0					29.0		
Yellow Time (s)		5.0		3.0	5.0					4.0		
All-Red Time (s)		2.0		2.0	2.0					3.0		
Lost Time Adjust (s)		0.0		0.0	0.0					0.0		
Total Lost Time (s)		7.0		5.0	7.0					7.0		
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0		5.0	3.0					1.5		
Recall Mode		C-Max		None	C-Max					None		
Act Effct Green (s)		43.8	120.0	29.0	77.8					28.2		120.0
Actuated g/C Ratio		0.36	1.00	0.24	0.65					0.24		1.00
v/c Ratio		1.20	0.55	1.11	0.88					0.94		0.43
Control Delay		131.3	1.4	96.5	17.7					64.9		0.8
Queue Delay		0.4	0.0	0.0	1.0					0.0		0.0
Total Delay		131.7	1.4	96.5	18.6					64.9		0.8
LOS		F	- A	F	B					E		A
Approach Delay		94.2			43.1						34.3	
Approach LOS		F			D						C	
90th \%ile Green (s)		43.0		29.6	77.0					29.0		
90th \%ile Term Code		Coord		Max	Coord					Max		
70th \%ile Green (s)		43.0		29.0	77.0	L				29.0		
70th \%ile Term Code		Coord		Max	Coord					Max		
50th \%ile Green (s)		43.0		29.0	77.0					29.0		
50th \%ile Term Code		Coord		Max	Coord					Max		
30th \%ile Green (s)		43.2		29.0	77.2					28.8		
30th \%ile Term Code		Coord		Max	Coord					Gap		
10th \%ile Green (s)		47.0		29.0	81.0					25.0		
10th \%ile Term Code		Coord		Max	Coord					Gap		
Stops (vph)		1672	0	775	947					647		0
Fuel Used(gal)		91	7	30	26					23		7
CO Emissions (g/hr)		6366	469	2105	1830					1608		478
NOx Emissions (g/hr)		1239	91	410	356					313		93
VOC Emissions (g/hr)		1475	109	488	424					373		111
Dilemma Vehicles (\#)		70	0	0	1					0		0
Queue Length 50th (ft)		~796	0	~ 444	254					297		0
Queue Length 95th (ft)		\#893	0	\#576	315					\#408		0
Internal Link Dist (ft)		1142			540			294			448	
Turn Bay Length (ft)												
Base Capacity (vph)		1832	1615	846	2341					837		1615
Starvation Cap Reductn		0	0	0	107					0		0
Spillback Cap Reductn		212	0	0	0					0		0
Storage Cap Reductn		0	0	0	0					0		0

	4			7			4				\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases			4									6
Detector Phase		4	5	3	8		5	2		1	6	6
Switch Phase												
Minimum Initial (s)		15.0	5.0	5.0	15.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)		22.0	10.0	10.0	22.0		10.0	11.0		10.0	11.0	11.0
Total Split (s)		75.0	22.0	10.0	85.0		22.0	25.0		10.0	13.0	13.0
Total Split (\%)		62.5\%	18.3\%	8.3\%	70.8\%		18.3\%	20.8\%		8.3\%	10.8\%	10.8\%
Maximum Green (s)		68.0	17.0	5.0	78.0		17.0	19.0		5.0	7.0	7.0
Yellow Time (s)		5.0	4.0	4.0	5.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)		2.0	1.0	1.0	2.0		1.0	2.0		1.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)		7.0	5.0	5.0	7.0		5.0	6.0		5.0	6.0	6.0
Lead/Lag		Lag	Lead	Lead			Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode		C-Max	None	None	C-Max		None	None		None	None	None
Act Effct Green (s)		68.0	92.0	6.1	79.1		17.0	25.9		5.0	5.9	5.9
Actuated g/C Ratio		0.57	0.77	0.05	0.66		0.14	0.22		0.04	0.05	0.05
v/c Ratio		1.09	0.60	0.74	0.55		0.89	0.46		0.01	0.60	0.59
Control Delay		75.2	3.3	68.5	15.5		71.5	19.1		56.0	15.1	14.8
Queue Delay		3.3	0.2	0.0	0.0		0.0	0.4		0.0	0.0	0.0
Total Delay		78.6	3.5	68.5	15.5		71.5	19.6		56.0	15.1	14.8
LOS		E	A		B		E	B		E	B	B
Approach Delay		60.7			19.0			54.6			15.1	
Approach LOS		68. Over capacity. Will six Coordlanes improve?						D			B	
90th \%ile Green (s)							17.0	19.0		5.0	7.0	7.0
90th \%ile Term Code							Max	Max		Max	Max	Max
70th \%ile Green (s)		68.0	17.0	6.2	79.2		17.0	27.8		0.0	5.8	5.8
70th \%ile Term Code		Coord	Max	Max	Coord		Max	Hold		Skip	Gap	Gap
50th \%ile Green (s)		68.0	17.0	6.5	79.5		17.0	27.5		0.0	5.5	5.5
50th \%ile Term Code		Coord	Max	Max	Coord		Max	Hold		Skip	Gap	Gap
30th \%ile Green (s)		68.0	17.0	6.5	79.5		17.0	27.5		0.0	5.5	5.5
30th \%ile Term Code		Coord	Max	Max	Coord		Max	Hold		Skip	Gap	Gap
10th \%ile Green (s)		68.0	17.0	6.5	79.5		17.0	27.5		0.0	5.5	5.5
10th \%ile Term Code		Coord	Max	Max	Coord		Max	Hold		Skip	Gap	Gap
Stops (vph)		1875	113	108	893		367	66		3	12	12
Fuel Used(gal)		72	5	4	24		11	2		0	1	1
CO Emissions (g/hr)		5055	383	250	1691		745	172		2	60	59
NOx Emissions (g/hr)		984	75	49	329		145	33		0	12	11
VOC Emissions (g/hr)		1172	89	58	392		173	40		1	14	14
Dilemma Vehicles (\#)		136	0	0	124		0	0		0	0	0
Queue Length 50th (ft)		~1009	92	55	281		175	46		1	0	0
Queue Length 95th (ft)		m\#971	m111	m\#88	404		\#264	132		7	43	41
Internal Link Dist (ft)		640			635			301			307	
Turn Bay Length (ft)			220	150			350			100		
Base Capacity (vph)		2462	1387	178	3387		496	457		75	252	252
Starvation Cap Reductn		20	118	0	0		0	0		0	0	0
Spillback Cap Reductn		567	0	0	0		0	53		0	0	0
Storage Cap Reductn		0	0	0	0		0	0		0	0	0

	4						4				$\frac{1}{\square}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases			4			8			2			6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase												
Minimum Initial (s)	5.0	10.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	17.0	10.0	10.0	12.0	10.0	10.0	12.0	10.0	10.0	12.0	10.0
Total Split (s)	25.0	46.0	23.0	16.0	37.0	23.0	23.0	35.0	16.0	23.0	35.0	25.0
Total Split (\%)	20.8\%	38.3\%	19.2\%	13.3\%	30.8\%	19.2\%	19.2\%	29.2\%	13.3\%	19.2\%	29.2\%	20.8\%
Maximum Green (s)	20.0	39.0	18.0	11.0	30.0	18.0	18.0	28.0	11.0	18.0	28.0	20.0
Yellow Time (s)	4.0	5.0	4.0	4.0	5.0	4.0	4.0	5.0	4.0	4.0	5.0	4.0
All-Red Time (s)	1.0	2.0	1.0	1.0	2.0	1.0	1.0	2.0	1.0	1.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	7.0	5.0	5.0	7.0	5.0	5.0	7.0	5.0	5.0	7.0	5.0
Lead/Lag	Lead	Lag	Lead									
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max	None	None	C-Max	None						
Act Effct Green (s)	23.5	44.7	69.7	9.4	30.5	50.4	18.0	29.1	45.5	12.8	23.9	54.5
Actuated g/C Ratio	0.20	0.37	0.58	0.08	0.25	0.42	0.15	0.24	0.38	0.11	0.20	0.45
v/c Ratio	0.86	1.08	0.80	0.46	$0.84 \bigcirc 10$		$\bigcirc 03$	073	0.22	0.59	0.75	0.70
Control Delay	41.2	77.5	$34.7-58.1$		52 Over capacity. Does ¿six lane improve?				6.7	57.3	50.1	27.7
Queue Delay	0.0	0.0	0.0	0.0					0.0	0.0	0.0	0.0
Total Delay	41.2	77.5	34.7	58.1	52.2	5.5	75.2	47.4	6.7	57.3	50.1	27.7
LOS	D	E	C	E	D	A	E	D	A	E	D	C
Approach Delay		58.2			46.3			53.1			43.4	
Approach LOS		E			D			D			D	
90th \%ile Green (s)	20.0	39.0	18.0	11.0	30.0	16.3	18.0	29.7	11.0	16.3	28.0	20.0
90th \%ile Term Code	Max	Coord	Max	Max	Coord	Gap	Max	Max	Max	Gap	Max	Max
70th \%ile Green (s)	21.4	40.7	18.0	10.7	30.0	14.3	18.0	30.3	10.7	14.3	26.6	21.4
70th \%ile Term Code	Max	Coord	Max	Gap	Coord	Gap	Max	Hold	Gap	Gap	Gap	Max
50th \%ile Green (s)	24.0	44.3	18.0	9.7	30.0	12.8	18.0	29.2	9.7	12.8	24.0	24.0
50th \%ile Term Code	Max	Coord	Max	Gap	Coord	Gap	Max	Hold	Gap	Gap	Gap	Max
30th \%ile Green (s)	25.7	47.1	18.0	8.6	30.0	11.4	18.0	28.9	8.6	11.4	22.3	25.7
30th \%ile Term Code	Max	Coord	Max	Gap	Coord	Gap	Max	Hold	Gap	Gap	Gap	Max
10th \%ile Green (s)	26.5	52.2	18.0	7.0	32.7	9.3	18.0	27.5	7.0	9.3	18.8	26.5
10th \%ile Term Code	Gap	Coord	Max	Gap	Coord	Gap	Max	Hold	Gap	Gap	Gap	Gap
Stops (vph)	410	1090	585	101	605	17	383	500	22	179	621	318
Fuel Used(gal)	13	42	16	4	23	2	22	25	3	7	24	12
CO Emissions (g/hr)	875	2911	1150	276	1608	137	1513	1764	217	492	1657	845
NOx Emissions (g/hr)	170	566	224	54	313	27	294	343	42	96	322	164
VOC Emissions (g/hr)	203	675	266	64	373	32	351	409	50	114	384	196
Dilemma Vehicles (\#)	0	15	0	0	27	0	0	21	0	0	25	0
Queue Length 50th (ft)	202	~678	587	48	298	9	193	240	12	85	210	273
Queue Length 95th (ft)	m216	m\#711	m570	76	358	43	\#276	293	50	118	237	384
Internal Link Dist (ft)		930			445			543			1142	
Turn Bay Length (ft)	300		200	175		150	225		200	325		250
Base Capacity (vph)	666	1343	972	321	909	816	525	879	711	525	1210	756
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0

